top of page

LAMBPLAN & MERINOSELECT

Australian Sheep Breeding Values (ASBV's)

Definitions and explanations

Sheep Breeding Values Explained

Australian Sheep Breeding Values (ASBV's) are an estimate of an animal’s true breeding value based on pedigree and performance recorded information. They are essentially a projection of how that animals progeny will perform for a range of traits. This is more effective than raw data as it accounts for environmental (i.e. feed, management, seasonal) effects.

We select with both ASBVs and visually, as both are equally as important.  We make sure to collect all this data in the most accurate way possible, ensuring the ASBVs generated from this data are of high accuracy.

Growth Breeding Values

Weaning Weight (kg) WWT

Estimates the genetic difference between animals in live-weight at 100 days of age. The higher the better.

 

Post Weaning Weight (kg) PWT

Estimates the genetic difference between animals in live-weight at 225 days of age. The higher the better.

Yearling Weight (kg) YWT

Estimates the genetic difference between animals in live-weight at 360 days of age.

Carcass Traits

Post Weaning Fat Depth (mm) PFAT

Estimates the genetic difference in GR fat depth at 45kg live-weight Desired level depends on breeding aims. Should not be extreme either way.

Post Weaning Eye Muscle Depth (mm) PEMD

Estimates the genetic difference in eye muscle depth at the C site in a live-weight animal. The higher the better.

Yearling Eye Muscle Depth (mm) YEMD

Estimates the genetic difference in EMD at the C site at 60kg live-weight Level depends on breeding aims.

Yearling Fat Depth (mm) YFAT

Estimates the genetic difference in GR fat depth at 60kg live-weight Level depends on breeding aims. Should not be extreme either way.

Reproduction

Birth Weight (kg) BWT

Estimates the genetic difference between animals in weight at birth. In terminal (White Suffolk) sires, the lower the better, as this decreases the chance of having lambing issues. But extremely low can also be a problem (more so in non-terminal breeds).

Maternal Weaning Weight (kg) MWWT

Estimates the genetic difference between the animals daughters weaning weights and their potential to provide milk and a better maternal environment. The higher the better.

Weaning Rate (WR)

Weaning rate is defined as the number of lambs weaned per ewe joined, and is expressed in the units of ‘lambs’, similar to the component traits. WR is calculated using the improved reproduction traits ERA, LS and CON (as explained below) and is derived by placing an economic value on each component at different average litter sizes. WR is an improvement on the old NLW.


Yearling Weaning Rate (YWR) 
Same as WR except for joining as ewe lambs. Is calculated using the yearling traits YERA (yearling ewe rearing ability), YLS (yearling litter size) & YCON (yearling conception).

 

Ewe Rearing Ability (ERA)

Describes the genetic difference between animals for rearing ability. How successfully did the ewe rear her litter? Sires with higher ERA will produce daughters which rear more of their litter.


Litter Size (LS)
Describes the genetic difference between animals for
litter size. How many lambs were born? Sires with
higher LS will produce daughters that give birth to
more lambs.


Conception (CON)
Describes the genetic difference between animals for
conception. Did the ewe conceive? Sires with higher
CON will produce daughters which have a higher
conception rate.

Lambing Ease Direct (%) (LE_DIR)

Describes how easily a sire’s lambs will be born, with a positive number preferred. (LE_DAU) is how easily the sires daughters lambs will be born. The higher the better for both.

micron%20fleece%20weights_edited.jpg

Wool Breeding Values

Yearling Fleece Weight (%) YGFW or YCFW

Estimate the genetic difference in fleece weight at 360 days of age. The higher the Better. (picture on right is raw data collection from 7 months growth on ewe lambs)

Yearling Fibre Diameter (micron) YFD

Estimates the genetic difference in fibre diameter at 360 days of age. Depends on breeding aims, usually the lower the better.

Yearling Fibre Diameter Coefficient of Variation (%) YFDCV

Estimates the genetic difference in fibre diameter coefficient of variation at 360 days of age. Animals with a lower YFDCV will genetically have a lower variation in fibre diameter (preferred).

Yearling Staple Strength (N/Kt) YSS

Estimates the genetic difference in staple strength at 360 days of age. The higher the better.

Yearling Staple Length (mm) YSL

Estimates the genetic difference in staple length at 360 days of age. Level depends on breeding aims.

Management / Ease Of Care Traits

Adult Weight (kg) AWT

Estimates the genetic difference between animals in live-weight as adults. A small to medium sized animal (with the same production breeding values as a bigger animal) is more efficient and easier to handle.

Worm Egg Count (%) PWEC & YWEC

Value of an animals genes for carrying worm burdens – a combination of being genetically less likely to pick up worms & being able to cope immunologically with the worm burden. The lower the better.

Early Breech Wrinkle (EBWR)

Wrinkle trait ASBVs have been developed by using breech and body wrinkle score & estimates the genetic difference. Negative is the preferred trait to reduce breech wrinkle. Useful to move away from mulesing.

 

Dag Score (LDAG)

Estimates the genetic difference of the likelihood of dags. A more negative ASBV is desirable.

 

Breach Cover (BCOV)

Refers to animals’ ability to produce less wool around the breach area. A more negative ASBV is desirable.

Eating Quality and Meat Yield

Lean Meat Yield (%) LMY

Rams with more positive LMY ASBVs produce lambs that have a higher Lean Meat Yield percentage at slaughter.

 

Intramuscular Fat (%) IMF

Rams with more positive IMF ASBVs produce progeny with higher levels of intramuscular fat. (IMF is a measure of the chemical fat percentage in the loin muscle of a lamb and is often referred to as marbling. IMF has been shown to have a significant impact on the flavor, juiciness, tenderness and overall likeability of lamb).

 

Shear Force (kg) SHRF5

Rams with more negative SF ASBVs produce lambs with more tender meat. (Shear Force is a measure of the force or energy required to cut through the loin muscle of lamb after 5 days of ageing, the ASBV is reported in deviations of kilograms of force.

Lambplan

Lamb 2020 Eating Quality Index (LEQ)

The Lamb 2020 Eating Quality index is targeted at terminal producers interested in improving the meat eating quality of their prime lambs while continuing to improve production traits in a balanced way. The LEQ index is based on the same production targets as TCP but adds worm egg count (WEC). LEQ now also includes lambing ease.

LEQ Index Graph.png

Lambplan

Terminal Carcass Production Index (TCP)

This index has been created to assist producers to achieve both gains in their major production traits, such as post-weaning weight and muscling, as well as ensuring consumer satisfaction from lamb is maintained through focusing on key eating quality traits such as shear force (tenderness) and intramuscular fat (marbling). Unlike LEQ this does not include worm resistance (WEC). TCP now also includes lambing ease.

TCP Index Graph.png

Lambplan 
Maternal Wool Production Plus (MWP+) 

Targets improvement of a self-replacing maternal
system where improvements in wool production and
quality are important. MWP+ balances improvements
in wool production and quality with increases in
growth, carcase and reproduction, and includes
emphasis on worm egg count. 

MWP+ index sheep genetics.jpg

Lambplan

Maternal Carcass Production Plus (MCP+)

The Maternal Carcase Production + (MCP+) index targets self-replacing production systems where maintaining the same adult weight and fleece weights are seen as important at the same time as improving carcase traits. A slight increase in clean fleece weight is expected. This index aims to reduce WEC as it is assumed in the index most enterprises are located in high rainfall areas and/or high input management systems. The contribution of each trait to economic gain is expressed in the graph along with the predicted genetic gain over 10 years.

MCPplus.gif

MerinoSelect Indexes (ML, SM, SMHR, WP, FW)

Sheep Genetics have developed some improved indexes from the old FP+, MP+ and DP+ indexes. This is a table showing the relative weighing of these new indexes. More details below.

New Index Summary.webp

MerinoSelect 
Fibre Production Indexes (FW & WP for current FP+ users)

In the existing Fibre Production Plus (FP+) there was specific focus on wool quality, reducing fibre diameter, increasing staple length, and reducing worm egg count.


Current FP+ users are likely to lean towards the Wool Production (WP) or Fine Wool (FW) research indexes.
The Fine Wool (FW) aligns the closest with the FP+ index however there is greater weighting on reducing wrinkle and improving reproduction via ewe rearing ability in the FW index.

Fiber Indexes.webp

MerinoSelect
Merino Production & Dual Purpose Index (SM, SMHR & ML or current MP+ & DP+ users)

The difference between these new research indexes will be determined on the individual breeders focus on traits such as worm egg count, dag and the level of emphasis on wool vs lamb production. All four indexes have a focus on reducing wrinkle and a balanced response to reproduction through emphasis on the component traits.

For Kangaroo Island high rainfall type conditions Sustainable Merino High Rainfall (SMHR) index is a great balance of wool quality and quantity, growth/carcass traits, increasing weaning percentages, and ease of care traits such as dag and worm resistance.

Sustainable Indexes.webp

Other Abbreviations in the Catalogue 

RT: Rear Type: Single (S), Twin (TW), Triplet (TR)

CM: Conception Method: Natural (N),
Artificial Insemination (AI), Pen Mate (PEN),
Embryo Transfer (ET)

bottom of page